If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18=-18d-d^2
We move all terms to the left:
18-(-18d-d^2)=0
We get rid of parentheses
d^2+18d+18=0
a = 1; b = 18; c = +18;
Δ = b2-4ac
Δ = 182-4·1·18
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{7}}{2*1}=\frac{-18-6\sqrt{7}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{7}}{2*1}=\frac{-18+6\sqrt{7}}{2} $
| 18=-18-d^2 | | t^2+4t-87=0 | | v-78=-1100 | | 8x=+4+5+3x | | X-5/2=2x-6/3 | | 5x=-25/4 | | 63z=49+8z^2 | | 2^x-1=1024^x | | 42+x=28 | | M-2n=9 | | 2x-75-x,11-5x=1 | | 5-2x/3=x/6-5 | | 15x+24=69 | | 2x+3/4-3=x-4/3-2 | | 20p=-10 | | 2(3-x)=x/5+4 | | 20p=10 | | (8m-2m+3m+5m-6m)=0 | | 5/9y=0 | | (X+3)(2x+2)=(2x-1)(x+5)-2 | | 5/4v-2/3=1/3 | | (X+3)(2x+2)=(2x+2)=(2x-1)(x+5)-2 | | 2a-99=29 | | 7+x=14+4x | | 10n^2-410n+3480=0 | | 0.5=x/4-3 | | 2(x-1)-2(3x-2)=14 | | 2(x-3)=3(x-11) | | 10/r=3/9 | | 3(x-7)+(x-4)=15 | | 40-2x^2=8 | | x²/3=12 |